Sand casting, also known as sand molded casting, is a metal casting process characterized by using sand—known as casting sand—as the mold material. The term "sand casting" can also refer to an object produced via the sand casting process. Sand castings are produced in specialized factory called foundry. In 2003, over 60% of all metal castings were produced via sand casting..
Molds made of sand are relatively cheap, and sufficiently refractory even for steel foundry use. In addition to the sand, a suitable bonding agent (usually clay) is mixed or occurs with the sand. The mixture is moistened, typically with water, but sometimes with other substances, to develop the strength and plasticity of the clay and to make the aggregate suitable for molding. The sand is typically contained in a system of frames or mold boxes known as a flask. The mold cavities and gate system are created by compacting the sand around models called patterns, by carving directly into the sand, or via 3D printing.
Paths for the entrance of metal into the mold cavity constitute the runner system and include the sprue, various feeders which maintain a good metal 'feed', and in-gates which attach the runner system to the casting cavity. Gas and steam generated during casting exit through the permeable sand or via risers, which are added either in the pattern itself, or as separate pieces.
Additive manufacturing (AM) can be used in the sand mold preparation, so that instead of the sand mold being formed via packing sand around a pattern, it is 3D-printed. This can reduce lead times for casting by obviating patternmaking. Besides replacing older methods, additive can also complement them in hybrid models, such as making a variety of AM-printed cores for a cavity derived from a traditional pattern.
To produce cavities within the casting—such as for liquid cooling in engine blocks and —negative forms are used to produce cores. Usually sand-molded, cores are inserted into the casting box after removal of the pattern. Whenever possible, designs are made that avoid the use of cores, due to the additional set-up time, mass and thus greater cost.
With a completed mold at the appropriate moisture content, the box containing the sand mold is then positioned for filling with molten metal—typically iron, steel, bronze, brass, aluminium, magnesium alloys, or various pot metal alloys, which often include lead, tin, and zinc. After being filled with liquid metal the box is set aside until the metal is sufficiently cool to be strong. The sand is then removed, revealing a rough casting that, in the case of iron or steel, may still be glowing red. In the case of metals that are significantly heavier than the casting sand, such as iron or lead, the casting flask is often covered with a heavy plate to prevent a problem known as floating the mold. Floating the mold occurs when the pressure of the metal pushes the sand above the mold cavity out of shape, causing the casting to fail.
After casting, the cores are broken up by rods or shot and removed from the casting. The metal from the sprue and risers is cut from the rough casting. Various may be applied to relieve stresses from the initial cooling and to add hardness—in the case of steel or iron, by quenching in water or oil. The casting may be further strengthened by surface compression treatment—like shot peening—that adds resistance to tensile cracking and smooths the rough surface. And when high precision is required, various machining operations (such as milling or boring) are made to finish critical areas of the casting. Examples of this would include the boring of cylinders and milling of the deck on a cast engine block.
There are many recipes for the proportion of clay, but they all strike different balances between moldability, surface finish, and ability of the hot molten metal to degasification. Coal, typically referred to in foundry as sea-coal, which is present at a ratio of less than 5%, partially combusts in the presence of the molten metal, leading to offgassing of organic vapors. Green sand casting for non-ferrous metals does not use coal additives, since the carbon monoxide created does not prevent oxidation. Green sand for aluminum typically uses olivine sand (a mixture of the minerals forsterite and fayalite, which is made by crushing dunite rock).
The choice of sand has a lot to do with the temperature at which the metal is poured. At the temperatures that copper and iron are poured, the clay is inactivated by the heat, in that the montmorillonite is converted to illite, which is a non-expanding clay. Most foundries do not have the very expensive equipment to remove the burned out clay and substitute new clay, so instead, those that pour iron typically work with silica sand that is inexpensive compared to the other sands. As the clay is burned out, newly mixed sand is added and some of the old sand is discarded or recycled into other uses. Silica is the least desirable of the sands, since metamorphic grains of silica sand have a tendency to explode to form sub-micron sized particles when thermally shocked during pouring of the molds. These particles enter the air of the work area and can lead to silicosis in the workers. Iron foundries expend considerable effort on aggressive dust collection to capture this fine silica. Various types of respiratory-protective equipment are also used in foundries.
The sand also has the dimensional instability associated with the conversion of quartz from alpha quartz to beta quartz at 680 °C (1250 °F). Often, combustible additives such as wood flour are added to create spaces for the grains to expand without deforming the mold. Olivine, chromite, etc. are therefore used because they do not have a phase transition that causes rapid expansion of the grains. Olivine and chromite also offer greater density, which cools the metal faster, thereby producing finer grain structures in the metal. Since they are not metamorphic minerals, they do not have the polycrystals found in silica, and subsequently they do not form hazardous sub-micron sized particles.
With both methods, the sand mixture is packed around a pattern, forming a mold cavity. If necessary, a temporary plug is placed in the sand and touching the pattern in order to later form a channel into which the casting fluid can be poured. Air-set molds are often formed with the help of a casting flask having a top and bottom part, termed the cope and drag. The sand mixture is tamped down as it is added around the pattern, and the final mold assembly is sometimes vibrated to compact the sand and fill any unwanted voids in the mold. Then the pattern is removed along with the channel plug, leaving the mold cavity. The casting liquid (typically molten metal) is then poured into the mold cavity. After the metal has solidified and cooled, the casting is separated from the sand mold. There is typically no mold release agent, and the mold is generally destroyed in the removal process. Sand Casting Process Description
The accuracy of the casting is limited by the type of sand and the molding process. Sand castings made from coarse green sand impart a rough texture to the surface, and this makes them easy to identify. Castings made from fine green sand can shine as cast but are limited by the depth to width ratio of pockets in the pattern. Air-set molds can produce castings with smoother surfaces than coarse green sand but this method is primarily chosen when deep narrow pockets in the pattern are necessary, due to the expense of the plastic used in the process. Air-set castings can typically be easily identified by the burnt color on the surface. The castings are typically shot blasted to remove that burnt color. Surfaces can also be later ground and polished, for example when making a large bell. After molding, the casting is covered with a residue of oxides, silicates and other compounds. This residue can be removed by various means, such as grinding, or shot blasting.
During casting, some of the components of the sand mixture are lost in the thermal casting process. Green sand can be reused after adjusting its composition to replenish the lost moisture and additives. The pattern itself can be reused indefinitely to produce new sand molds. The sand molding process has been used for many centuries to produce castings manually. Since 1950, partially automated casting processes have been developed for production lines.
The V-process is known for not requiring a draft because the plastic film has a certain degree of lubricity and it expands slightly when the vacuum is drawn in the flask. The process has high dimensional accuracy, with a tolerance of ±0.010 in for the first inch and ±0.002 in/in thereafter. Cross-sections as small as are possible. The surface finish is very good, usually between 150 and 125 rms. Other advantages include no moisture related defects, no cost for binders, excellent sand permeability, and no toxic fumes from burning the binders. Finally, the pattern does not wear out because the sand does not touch it. The main disadvantage is that the process is slower than traditional sand casting so it is only suitable for low to medium production volumes; approximately 10 to 15,000 pieces a year. However, this makes it perfect for prototype work, because the pattern can be easily modified as it is made from plastic..
Today there are many manufacturers of the automatic horizontal flask molding lines. The major disadvantages of these systems is high spare parts consumption due to multitude of movable parts, need of storing, transporting and maintaining the flasks and productivity limited to approximately 90–120 molds per hour.
The method alike to the DISA's (DISAMATIC) vertical molding is flaskless, however horizontal. The matchplate molding technology is today used widely. Its great advantage is inexpensive pattern tooling, easiness of changing the molding tooling, thus suitability for manufacturing castings in short series so typical for the jobbing foundries. Modern matchplate molding machine is capable of high molding quality, less casting shift due to machine-mold mismatch (in some cases less than ), consistently stable molds for less grinding and improved parting line definition. In addition, the machines are enclosed for a cleaner, quieter working environment with reduced operator exposure to safety risks or service-related problems.
Safeguarding of machinery, CSA Z432. Canadian Standards Association. 2016.
In addition, the electrical safety requirements are covered by:
Industrial Electrical Machinery, CSA C22.2 No. 301. 2016.
EN 710 will need to be used in conjunction with EN 60204-1 for electrical safety, and EN ISO 13849-1 and EN ISO 13849-2 or EN 62061 for functional safety. Additional type C standards may also be necessary for conveyors, robotics or other equipment that may be needed to support the operation of the mold-making equipment.
Refractoriness — This refers to the sand's ability to withstand the temperature of the liquid metal being cast without breaking down. For example, some sands only need to withstand if casting aluminum alloys, whereas steel needs a sand that will withstand . Sand with too low refractoriness will melt and fuse to the casting.
Chemical inertness — The sand must not react with the metal being cast. This is especially important with highly reactive metals, such as magnesium and titanium.
Permeability — This refers to the sand's ability to exhaust gases. This is important because during the pouring process many gases are produced, such as hydrogen gas, nitrogen gas, carbon dioxide, and steam, which must leave the mold otherwise casting defects, such as blow holes and gas holes, occur in the casting. Note that for each cubic centimeter (cc) of water added to the mold 1600 cc of steam is produced.
Surface finish — The size and shape of the sand particles defines the best surface finish achievable, with finer particles producing a better finish. However, as the particles become finer (and surface finish improves) the permeability becomes worse.
Cohesiveness (or bond) — This is the ability of the sand to retain a given shape after the pattern is removed..
Flowability – The ability for the sand to flow into intricate details and tight corners without special processes or equipment..
Collapsibility — This is the ability of the sand to be easily stripped off the casting after it has solidified. Sands with poor collapsibility will adhere strongly to the casting. When casting metals that contract a lot during cooling or with long freezing temperature ranges a sand with poor collapsibility will cause cracking and in the casting. Special additives can be used to improve collapsibility.
Availability/cost — The availability and cost of the sand is very important because for every ton of metal poured, three to six tons of sand is required. Although sand can be screened and reused, the particles eventually become too fine and require periodic replacement with fresh sand.
In large castings it is economical to use two different sands, because the majority of the sand will not be in contact with the casting, so it does not need any special properties. The sand that is in contact with the casting is called facing sand, and is designed for the casting on hand. This sand will be built up around the pattern to a thickness of . The sand that fills in around the facing sand is called backing sand. This sand is simply silica sand with only a small amount of binder and no special additives..
Silica sand is the most commonly used sand because of its great abundance, and, thus, low cost (therein being its greatest advantage). Its disadvantages are high thermal expansion, which can cause casting defects with high melting point metals, and low thermal conductivity, which can lead to unsound casting. It also cannot be used with certain basic metals because it will chemically interact with the metal, forming surface defects. Finally, it releases silica particulates during the pour, risking silicosis in foundry workers..
MDI (methylene diphenyl diisocyanate) is also a commonly used binder resin in the foundry core process.
The advantage to this binder is that it can be used at room temperature and is fast. The disadvantage is that its high strength leads to shakeout difficulties and possibly hot tears (probably due to quartz inversion) in the casting. The mixed sodium silicate and sand may also be heated by a heat gun to achieve better rigideness.
Up to 5% of reducing agents, such as coal powder, pitch, creosote, and fuel oil, may be added to the molding material to prevent wetting (prevention of liquid metal sticking to sand particles, thus leaving them on the casting surface), improve surface finish, decrease metal penetration, and . These additives achieve this by creating gases at the surface of the mold cavity, which prevent the liquid metal from adhering to the sand. Reducing agents are not used with steel casting, because they can carburize the metal during casting..
Up to 3% of "cushioning material", such as wood flour, sawdust, powdered , peat, and straw, can be added to reduce scabbing, hot tear, and hot cracking casting defects when casting high temperature metals. These materials are beneficial because burn-off when the metal is poured creates tiny voids in the mold, allowing the sand particles to expand. They also increase collapsibility and reduce shakeout time.
Up to 2% of cereal binders, such as dextrin, starch, sulphite lye, and molasses, can be used to increase dry strength (the strength of the mold after curing) and improve surface finish. Cereal binders also improve collapsibility and reduce shakeout time because they burn off when the metal is poured. The disadvantage to cereal binders is that they are expensive.
Up to 2% of iron oxide powder can be used to prevent mold cracking and metal penetration, essentially improving refractoriness. Silica flour (fine silica) and zircon flour also improve refractoriness, especially in ferrous castings. The disadvantages to these additives is that they greatly reduce permeability.
The king Sennacherib (704–681 BC) cast massive bronzes of up to 30 tonnes, and claims to have been the first to have used clay molds rather than the "lost-wax" method:Stephanie Dalley, The Mystery of the Hanging Garden of Babylon: An Elusive World Wonder Traced, Oxford University Press (2013). . Translation by the author, reproduced by permission of Oxford University Press.
Whereas in former times the kings my forefathers had created bronze statues imitating real-life forms to put on display inside their temples, but in their method of work they had exhausted all the craftsmen, for lack of skill and failure to understand the principles they needed so much oil, wax and tallow for the work that they caused a shortage in their own countries—I, Sennacherib, leader of all princes, knowledgeable in all kinds of work, took much advice and deep thought over doing that work. Great pillars of bronze, colossal striding lions, such as no previous king had ever constructed before me, with the technical skill that Ninushki brought to perfection in me, and at the prompting of my intelligence and the desire of my heart I invented a technique for bronze and made it skillfully. I created clay moulds as if by divine intelligence....twelve fierce lion-colossi together with twelve mighty bull-colossi which were perfect castings... I poured copper into them over and over again; I made the castings as skillfully as if they had only weighed half a shekel each
In 1206, Ismail al-Jazari first described the casting of metals in closed mold boxes with Molding sand.Donald Hill, "Mechanical Engineering in the Medieval Near East", Scientific American, May 1991, pp. 64-9 (cf. Donald Hill, Mechanical Engineering ) Sand casting molding method was recorded by Vannoccio Biringuccio in his book published around 1540.
In 1924, the Ford Motor Company set a record by producing 1 million cars, in the process consuming one-third of the total casting production in the U.S. As the automobile industry grew the need for increased casting efficiency grew. The increasing demand for castings in the growing car and machine building industry during and after World War I and World War II, stimulated new inventions in mechanization and later automation of the sand casting process technology.
There was not one bottleneck to faster casting production but rather several. Improvements were made in molding speed, molding sand preparation, sand mixing, core manufacturing processes, and the slow metal melting rate in . In 1912, the sand slinger was invented by the United States company Beardsley & Piper. In 1912, the first sand mixer with individually mounted revolving was marketed by the Simpson Company. In 1915, the first experiments started with bentonite clay instead of simple fire clay as the bonding additive to the molding sand. This increased tremendously the green and dry strength of the molds. In 1918, the first fully automated foundry for fabricating hand for the U.S. Army went into production. In the 1930s the first high-frequency coreless electric furnace was installed in the U.S. In 1943, ductile iron was invented by adding magnesium to the widely used grey iron. In 1940, thermal sand reclamation was applied for molding and core sands. In 1952, the "D-process" was developed for making shell molds with fine, pre-coated sand. In 1953, the hotbox core sand process in which the cores are thermally cured was invented. In 1954, a new core binder—water glass (sodium silicate), hardened with carbon dioxide from ambient air, came out
In the 2010s, additive manufacturing began to be applied to sand mold preparation in commercial production; instead of the sand mold being formed via packing sand around a pattern, it is 3D-printed.
|
|